
A Look at Some Ideas and
Experiments

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

Orientation

The design of smart numerical libraries;
libraries that can use the “best” available
resources, analyze the data, and search
the space of solution strategies to make
optimal choices
The development of “agent-based”
methods for solving large numerical
problems on both local and distant grids
Development of a prototype framework
based on standard components for
building and executing composite
applications

The Grid: Abstraction

Semantically: the grid is nothing but
abstraction

Resource abstraction
Physical resources can be assigned to virtual
resource needs (matched by properties)
Grid provides a mapping between virtual and
physical resources

User abstraction
Grid provides a temporal mapping between virtual
and physical users

With The Grid…

What performance are we evaluating?
Algorithms
Software
Systems

What are we interested in?
Fastest time to solution?
Best resource utilization?
Lowest “cost” to solution?
Reliability of solution?
…

NSF/NGS
GrADS - GrADSoft Architecture

Goal: reliable performance on dynamically
changing resources

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

PIs: Ken Kennedy, Fran Berman, Andrew Chein, Keith Cooper, JD, Ian Foster,
Lennart Johnsson, Dan Reed, Carl Kesselman, John Mellor-Crummey,
Linda Torczon & Rich Wolski

NSF/NGS
GrADS - GrADSoft Architecture

Goal: reliable performance on dynamically
changing resources

Whole-
Program
Compiler

Libraries
Binder

Real-time
Performance

Monitor

Performance
Problem

Resource
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance
Feedback

Negotiation

PIs: Ken Kennedy, Fran Berman, Andrew Chein, Keith Cooper, JD, Ian Foster,
Lennart Johnsson, Dan Reed, Carl Kesselman, John Mellor-Crummey,
Linda Torczon & Rich Wolski

ScaLAPACK is a portable
distributed memory numerical
library
Complete numerical library for dense
matrix computations
Designed for distributed parallel computing
(MPP & Clusters) using MPI
One of the first math software packages to
do this
Numerical software that will work on a
heterogeneous platform
Funding from DOE, NSF, and DARPA
In use today by IBM, HP-Convex, Fujitsu,
NEC, Sun, SGI, Cray, NAG, IMSL, …

Tailor performance & provide support

ScaLAPACK

To Use ScaLAPACK a User Must:

Download the package and auxiliary packages (like
PBLAS, BLAS, BLACS, & MPI) to the machines.
Write a SPMD program which

Sets up the logical 2-D process grid
Places the data on the logical process grid
Calls the numerical library routine in a SPMD fashion
Collects the solution after the library routine finishes

The user must allocate the processors and decide the
number of processes the application will run on
The user must start the application

“mpirun –np N user_app”
Note: the number of processors is fixed by the user
before the run, if problem size changes dynamically …

Upon completion, return the processors to the pool of
resources

ScaLAPACK Grid Enabled

Implement a version of a ScaLAPACK
library routine that runs on the Grid.

Make use of resources at the user’s disposal
Provide the best time to solution
Proceed without the user’s involvement

Make as few changes as possible to the
numerical software.
Assumption is that the user is already
“Grid enabled” and runs a program that
contacts the execution environment to
determine where the execution should
take place.
Best time to solution

GrADS Numerical Library
Want to relieve the user of some of the tasks
Make decisions on which machines to use based on the
user’s problem and the state of the system

Determinate machines that can be used
Optimize for the best time to solution
Distribute the data on the processors and
collections of results
Start the SPMD library routine on all the platforms
Check to see if the computation is proceeding as
planned

If not perhaps migrate application

Big Picture…

User has problem to solve (e.g. Ax = b)

Natural
Data (A,b)

Natural
Answer (x)

Application Library (e.g. LAPACK,
ScaLAPACK, PETSc,…)

Middleware

Structured
Data (A’,b’)

Structured
Answer (x’)

Numerical Libraries for Grids

User

Stage data to disk

A b

Numerical Libraries for Grids

User

A b Library
Middle-ware

Numerical Libraries for Grids

User

A b Library
Middle-ware

NWS
Autopilot

MDS

Time function
minimization

Resource
Selection

Numerical Libraries for Grids

User

A b Library
Middle-ware

NWS
Autopilot

MDS

Time function
minimization

Resource
Selection

Uses Grid infrastructure, i.e.Globus/NWS.

GrADS Library Sequence

Library
RoutineUser

Has “crafted code” to make things
work correctly and together.

Assumptions:
Autopilot Manager has been started
and
Globus is there.

Resource Selector

Uses MDS and NWS to build
an array of values

2 matrices (bw,lat) 2 arrays (cpu,
memory available)
Matrix information is clique based

On return from RS, Crafted Code filters
information to use only machines that
have the necessary software and are
really eligible to be used.

Library
RoutineUser Resource

Selector

Resource Selector Input

Clique based
2 @ UT, UCSD, UIUC

Part of the MacroGrid

Full at the cluster level and the
connections (clique leaders)
Bandwidth and Latency
information looks like this.
Linear arrays for CPU and
Memory

Matrix of values are filled out to
generate a complete, dense,
matrix of values.
At this point have a workable
coarse grid.

Know what is available, the
connections, and the power of
the machines

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

xxx

x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

xx

xx
x x x x
x x x x
x x x x
x x x x

x

xxx

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

Uses NWS to collect information

ScaLAPACK Performance Model

Total number of floating-point
operations per processor

Total number of data items
communicated per processor
Total number of messages
Time per floating point operation

Time per data item communicated

Time per message

(,) f f v v m mT n p C t C t C t= + +
32

3f
nC
p

=
2

2
1(3 log)
4

n
p

2(6 log)m p= +

ft

vt

mt

vC p= +

C n

Resource Selector/Performance Modeler

Time estimate,
Model Output

Fine grid, Time
estimate, Model
Output

Performance
Model

Library writer to supply

Optimizer

Problem
Parameters,
Coarse Grid

MDS, NWS

Coarse Grid

Refines the course grid by
determining the process set that
will provide the best time to
solution.
This is based on dynamic
information from the grid and
the routines performance
model.
The PM does a simulation of the
actual application using the
information from the RS.

It literally runs the program
without doing the computation or
data movement.

There is no backtracking in the
Optimizer.

This is an area for enhancement
and experimentation.

Simulated annealing used as
well

Performance Model Validation

Speed = performance of DGEMM (ATLAS)

Opus14 Opus13 Opus16 Opus15 Torc4 Torc6 Torc7
mem(MB) 215 214 227 215 233 479 479
speed 270 270 270 270 330 330 330
load 1 0.99 1 0.99 1 1.04 0.87

Bandwidth Opus14 Opus13 Opus16 Opus15 Torc4 Torc6 Torc7
Opus14 -1 248.83 247.31 246.38 2.83 2.83 2.83
Opus13 248.83 -1 244.54 240.94 2.83 2.83 2.83
Opus16 247.31 244.54 -1 247.54 2.83 2.83 2.83
Opus15 246.38 240.94 247.54 -1 2.83 2.83 2.83
Torc4 2.83 2.83 2.83 2.83 -1 81.96 56.47
Torc6 2.83 2.83 2.83 2.83 81.96 -1 50.9
Torc7 2.83 2.83 2.83 2.83 56.47 50.9 -1

Latency in msec

Latency Opus14 Opus13 Opus16 Opus15 Torc4 Torc6 Torc7
Opus14 -1 0.24 0.29 0.26 83.78 83.78 83.78
Opus13 0.24 -1 0.24 0.23 83.78 83.78 83.78
Opus16 0.29 0.24 -1 0.23 83.78 83.78 83.78
Opus15 0.26 0.23 0.23 -1 83.78 83.78 83.78
Torc4 83.78 83.78 83.78 83.78 -1 0.31 0.31
Torc6 83.78 83.78 83.78 83.78 0.31 -1 0.31
Torc7 83.78 83.78 83.78 83.78 0.31 0.31 -1

Bandwidth in Mb/s

This is for a refined grid

Experimental Hardware / Software Grid

Globus version 1.1.3
Autopilot version 2.3
NWS version 2.0.pre2
MPICH-G version 1.1.2
ScaLAPACK version 1.6
ATLAS/BLAS version 3.0.2
BLACS version 1.1
PAPI version 1.1.5
GrADS’ “Crafted code”

TORC CYPHER OPUS

Type Cluster
8 Dual Pentium
III

Cluster 16 Dual
Pentium III

Cluster
8 Pentium II

OS Red Hat Linux
2.2.15 SMP

Debian Linux
2.2.17 SMP

Red Hat Linux
2.2.16

Memory 512 MB 512 MB 128 or 256 MB

CPU speed 550 MHz 500 MHz 265 – 448 MHz

Network Fast Ethernet
(100 Mbit/s)
(3Com
3C905B) and
switch
(BayStack
350T) with 16
ports

Gigabit
Ethernet (SK-
9843) and
switch
(Foundry
FastIron II)
with 24 ports

Myrinet
(LANai 4.3)
with 16 ports
each

MacroGrid
Testbed

Independent components being
put together and interacting

Grid ScaLAPACK vs Non-Grid ScaLAPACK,
Dedicated Torc machines

0

100

200

300

400

500

600

Grid Non-
Grid

 Grid Non-
Grid

 Grid Non-
Grid

 Grid Non-
Grid

 Grid Non-
Grid

T
im

e
 (

s
e
c
o

n
d

s
)

Time for Application Execution
Time for processes spawning

Time for NWS retrieval
Time for MDS retrieval

N=600, NB=40,

2 torc procs.
Ratio: 46.12

N=1500, NB=40,

4 torc procs.
Ratio: 15.03

N=5000, NB=40,

6 torc procs.
Ratio: 2.25

N=8000, NB=40,

8 torc procs.
Ratio: 1.52

N=10,000, NB=40,

8 torc procs.
Ratio: 1.29

PDGESV Time Breakdown
ScaLAPACK - PDGESV - Using collapsed NWS query from UCSB
42 machine available, using mainly torc, cypher, msc clusters at UTK

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

Matrix Size - Nproc

Ti
m

e
(s

ec
on

ds
)

other

PDGESV

spawn

NWS

MDS

other 4.7 5.3 1.0 2.3 7.6 1.1 4.7

PDGESV 58.7 394.7 749.4 1686.7 2747.1 4472.7 5020.4

spawn 92.2 105.9 154.1 124.7 135.6 181.0 264.5

NWS 5.5 7.4 12.3 12.0 4.2 10.2 8.5

MDS 13.0 11.0 10.0 11.0 14.0 73.0 12.0

5000-10 10000-12 15000-14 20000-14 25000-18 30000-18 35000-27

ScaLAPACK across 3 Clusters

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000

Matrix Size

Ti
m

e
(s

ec
on

ds
)

5 OPUS
8 OPUS

8 OPUS

8 OPUS, 6 CYPHER

8 OPUS, 2 TORC, 6 CYPHER

6 OPUS, 5 CYPHER

2 OPUS, 4 TORC, 6 CYPHER

8 OPUS, 4 TORC, 4 CYPHER

OPUS OPUS, CYPHER OPUS, TORC, CYPHER

Largest Problem Solved

Matrix of size 35,000
7.2 GB for the data
32 processors to choose from UIUC and UT

Not all machines have 512 MBs, some little as 128
MBs

PM chose 27 machines in 3 clusters from UT
Computation took 87 minutes

5.5 Gflop/s total
205 Mflop/s per processor
Rule of thumb for ScaLAPACK is about 50% of
theoretical peak
Processors are 500 MHz or 500 Mflop/s peak
For this grid computation 6% less than ScaLAPACK

LAPACK For Clusters
Developing middleware which couples cluster
system information with the specifics of a user
problem to launch cluster based applications on
the “best” set of resource available.

Using ScaLAPACK as the prototype software

1

Conclusions

For this application the NetSolve implementation is
superior to the Globus implementation.
Globus carries a larger overhead than NetSolve.
The degree of variablity in the Globus
measurements is much greater than the variability
of the NetSolve measurements.
Fluctuations in network traffic and server load may
have influenced the large increase in variability in
some of the test cases.

Globus may have better results when used over a
WAN or with larger data files, do to its ability to use
multiple parallel data streams during data
transfers.

Lessons Learned

Grid magnifies performance related problems we haven’t
solved well on large scale systems, SMP, or in some
cases sequential processors.
Performance evaluation is hard

Dynamic nature
Automate the selection

User doesn’t want or know how
Need performance model

Automagic would be best
Need info on grid performance (NWS)

BW/Lat/processor/memory
Monitoring tools

Performance diagnostic tools are desperately needed.
Lack of tools is hampering development today.

This is a time for experimentation, not standards

Conclusions: What is Needed

Execution infrastructure for adaptive execution
Automatic resource location and execution initiation
Dynamic configuration to available resources
Performance monitoring and control strategies

deep integration across compilers, tools, and runtime
systems
performance contracts and dynamic reconfiguration

Abstract Grid programming models and easy-to-use
programming interfaces

Problem-solving environments
Robust reliable numerical and data-structure libraries

Predictability and robustness of accuracy and performance
Reproducibility and fault tolerance
Dynamic reconfigurability of the application

	A Look at Some Ideas and Experiments
	Orientation
	The Grid: Abstraction
	With The Grid…
	
	NSF/NGS GrADS - GrADSoft Architecture
	NSF/NGS GrADS - GrADSoft Architecture
	ScaLAPACK
	To Use ScaLAPACK a User Must:
	ScaLAPACK Grid Enabled
	GrADS Numerical Library
	Big Picture…
	Numerical Libraries for Grids
	Numerical Libraries for Grids
	Numerical Libraries for Grids
	Numerical Libraries for Grids
	GrADS Library Sequence
	Resource Selector
	Resource Selector Input
	ScaLAPACK Performance Model
	Resource Selector/Performance Modeler
	Performance Model Validation
	Experimental Hardware / Software Grid
	
	PDGESV Time Breakdown
	Largest Problem Solved
	LAPACK For Clusters
	Conclusions
	Lessons Learned
	Conclusions: What is Needed

